オンライン版ネットワーク交流会&シーズ提供セミナー:2021年11月15日~19日

慶應義塾大学 理工学部 泰岡顕治 yasuoka@mech.keio.ac.jp

Molecular Dynamics (MD) Simulation

Contents

Machine learning for Molecular Dynamics simulations

- Acceleration of Molecular Dynamics simulations (Supervised Learning)
- Analysis of Molecular Dynamics data using machine learning (Unsupervised Learning)

5

Acceleration of MD Simulations

Problem of MD simulations:

- The high computational costs of large scale, long time MD simulations
- Acceleration of large scale (106~109 particles) MD simulations Divide the space and apply the massively parallel computing

 Large scale simulation of droplet nucleation Although the droplet nucleation is rare event, a lot of droplet can be observed in large scale simulation.
Simulation results showed good agreements with theory. Ayuba et al., J. Chem. Phys., 149, 044504 (2018)

Acceleration of long time MD simulations Time evolution cannot be separated and parallelized. \rightarrow Multiple time step method (= still need long computational time)

A novel method for the acceleration of long time simulations is required.

Acceleration of MD Simulations by ML

· Generation of long time data using short time data by ML

Multi-step Time Series Generator for MD

- Efficient generation of MD time series data using <u>GANs</u>* \rightarrow Consider <u>the time evolution of a part of the whole system</u> Extraction of feature *y* from whole system *x* Time step for *y* is larger than that for original MD (= step skip)
- * GANs: Ger rative adversarial nets

Architecture of MD-GAN MD-GAN is based on Wasserstein GAN

Time evolution of the part of system = stochastic evolution. When we perform the stochastic evolution iteratively, we encounter the exposure bias

MSD of Polyethylene Polymer Chain · MD simulation of 300 polyethylene polymer chains (M = 1405 g/mol, 500 K, TraPPE-UA force fields) Slope of MSD for the chain center anomaly changes 10 [sd/ 10 [nm²/ **MSD** 10 t^{0.5} Time [ps] Takahashi *et al., Polymers* 9, 24 (2017).

Prediction by MD-GAN

Contents

Machine learning for Molecular Dynamics simulations

- Acceleration of Molecular Dynamics simulations

Statistical distance between LDEs

· Comparison of systems using the statistical distance between LDEs. · Wasserstein distance is easily calculated by DNNs.

MSD of Polyethylene Polymer Chain

q

- (Supervised Learning)
- Analysis of Molecular Dynamics data using machine learning (Unsupervised Learning)

Embeddings of LDEs

To clearly illustrate the differences between systems, we obtain low-dimensional embeddings using the calculated distances.

Molecular behavior contributing to distances

- As a result of trained function, the output (Wasserstein distance) is directly connected to the input (MD data).
- The molecular behavior that characterizes systems is detected using the trained function

Amino acid solution (20 amino acid solution + 1 water bulk) \rightarrow LDE: 64 steps of displacement for dipole moment

Summary

- Research of MD using machine learning Acceleration of MD simulations Using MD-GAN, physical properties of molecular systems can be predicted. MD-GAN is powerful tool for the prediction of long time correlation. Analysis of MD data
 - Using Wasserstein distance calculations, we successfully detected the representative molecular behavior.
 - It is potentially useful for the investigation of new order parameters.

Future goal

Fast and automatic analysis tool for molecular dynamics data. → Development of material research

K. Endo, K. Tomobe, K. Yasuoka, 32nd AAAI Conference on Artificial Intelligence, 2192 (2018). w.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16477

K. Endo, D. Yuhara, K. Tomobe, K. Yasuoka, Nanoscale, 11, 10064-10071 (2019).